Efficiency of Swimming Microrobots Using Ionic Polymer Metal Composite Actuators

نویسندگان

  • Guillaume J. Laurent
  • Emmanuel Piat
چکیده

In this paper, we present a survey of sh-like propulsion at millimeter scale in order to build high eÆciency swimming microrobots. We begin with a mechanical study of the sh-like propulsion. The mechanical model we used shows that undulatory motions are more eÆcient than oscillatory motions. We applied these theoretical results to the design and the realization of a microrobot propelled by the beating of two ns. Fins are moved by a transducer material called I.P.M.C. (Ionic Polymer Composite Metal). The experimental results allow us to check our theoretical model of the microrobot. Lastly, we propose an improved microrobot which would have a better eÆciency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A biomimetic underwater microrobot with multifunctional locomotion

Underwater microrobots are in urgent demand for applications such as pollution detection and video mapping in limited space. Compact structure, multi-functionality, and flexibility are normally considered incompatible characteristics for underwater microrobots. Nevertheless, to accomplish our objectives, we designed a novel inchworm-inspired biomimetic locomotion prototype with ionic polymer me...

متن کامل

A Novel Soft Biomimetic Microrobot with Two Motion Attitudes

 A variety of microrobots have commonly been used in the fields of biomedical engineering and underwater operations during the last few years. Thanks to their compact structure, low driving power, and simple control systems, microrobots can complete a variety of underwater tasks, even in limited spaces. To accomplish our objectives, we previously designed several bio-inspired underwater microro...

متن کامل

A biomimetic undulatory tadpole robot using ionic polymer–metal composite actuators

The development of a wireless undulatory tadpole robot using ionic polymer–metal composite (IPMC) actuators is presented. In order to improve the thrust of the tadpole robot, a biomimetic undulatory motion of the fin tail is implemented. The overall size of the underwater microrobot prototype, shaped as a tadpole, is 96 mm in length, 24 mm in width, and 25 mm in thickness. It has one polymer fi...

متن کامل

Robotic Systems Development of a Lobster - Inspired Underwater Microrobot Regular Paper

Biomimetic underwater microrobots are of great interest for underwater monitoring operations, such as pollution detection and video mapping in restricted underwater environments. Generally speaking, compact structure, multi‐functionality, flexibility and precise positioning are considered incompatible characteristics for underwater microrobots. Nevertheless, we have designed...

متن کامل

Conductive Filler Morphology Effect on Performance of Ionic Polymer Conductive Network Composite Actuators

Several generations of ionic polymer metal composite (IPMC) actuators have been developed since 1992. It has been discovered that the composite electrodes which are composed of electronic and ionic conductors, have great impact on performance of ionic polymer actuators by affecting strain level, efficiency and speed. One of important factors in composite electrodes is the shape and morphology o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001